Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2209.06086v1

ABSTRACT

We constructed a frequently updated, near-real-time global power generation dataset: Carbon Monitor-Power since January, 2016 at national levels with near-global coverage and hourly-to-daily time resolution. The data presented here are collected from 37 countries across all continents for eight source groups, including three types of fossil sources (coal, gas, and oil), nuclear energy and four groups of renewable energy sources (solar energy, wind energy, hydro energy and other renewables including biomass, geothermal, etc.). The global near-real-time power dataset shows the dynamics of the global power system, including its hourly, daily, weekly and seasonal patterns as influenced by daily periodical activities, weekends, seasonal cycles, regular and irregular events (i.e., holidays) and extreme events (i.e., the COVID-19 pandemic). The Carbon Monitor-Power dataset reveals that the COVID-19 pandemic caused strong disruptions in some countries (i.e., China and India), leading to a temporary or long-lasting shift to low carbon intensity, while it had only little impact in some other countries (i.e., Australia). This dataset offers a large range of opportunities for power-related scientific research and policy-making.


Subject(s)
COVID-19
2.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2104.06904v1

ABSTRACT

In October of 2020, China announced that it aims to start reducing its carbon dioxide (CO2) emissions before 2030 and achieve carbon neutrality before 20601. The surprise announcement came in the midst of the COVID-19 pandemic which caused a transient drop in China's emissions in the first half of 2020. Here, we show an unprecedented de-carbonization of China's power system in late 2020: although China's power related carbon emissions were 0.5% higher in 2020 than 2019, the majority (92.9%) of the increased power demand was met by increases in low-carbon (renewables and nuclear) generation (increased by 9.3%), as compared to only 0.4% increase for fossil fuels. China's low-carbon generation in the country grew in the second half of 2020, supplying a record high of 36.7% (increased by 1.9% compared to 2019) of total electricity in 2020, when the fossil production dropped to a historical low of 63.3%. Combined, the carbon intensity of China's power sector decreased to an historical low of 519.9 tCO2/GWh in 2020. If the fast decarbonization and slowed down power demand growth from 2019 to 2020 were to continue, by 2030, over half (50.8%) of China's power demand could be provided by low carbon sources. Our results thus reveal that China made progress towards its carbon neutrality target during the pandemic, and suggest the potential for substantial further decarbonization in the next few years if the latest trends persist.


Subject(s)
COVID-19
3.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2102.03240v1

ABSTRACT

The COVID-19 pandemic has disrupted human activities, leading to unprecedented decreases in both global energy demand and GHG emissions. Yet a little known that there is also a low carbon shift of the global energy system in 2020. Here, using the near-real-time data on energy-related GHG emissions from 30 countries (about 70% of global power generation), we show that the pandemic caused an unprecedented de-carbonization of global power system, representing by a dramatic decrease in the carbon intensity of power sector that reached a historical low of 414.9 tCO2eq/GWh in 2020. Moreover, the share of energy derived from renewable and low-carbon sources (nuclear, hydro-energy, wind, solar, geothermal, and biomass) exceeded that from coal and oil for the first time in history in May of 2020. The decrease in global net energy demand (-1.3% in the first half of 2020 relative to the average of the period in 2016-2019) masks a large down-regulation of fossil-fuel-burning power plants supply (-6.1%) coincident with a surge of low-carbon sources (+6.2%). Concomitant changes in the diurnal cycle of electricity demand also favored low-carbon generators, including a flattening of the morning ramp, a lower midday peak, and delays in both the morning and midday load peaks in most countries. However, emission intensities in the power sector have since rebounded in many countries, and a key question for climate mitigation is thus to what extent countries can achieve and maintain lower, pandemic-level carbon intensities of electricity as part of a green recovery.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL